
Requirements Specification

Abstract
The purpose of this system is to create and implement a functional

incident management system for the customer, Fox Valley Special
Recreation Association. Their current system is utilized with paper forms and
needs to be replaced with a web application for all employees and
designated admins to use.

​ ​

1.​Introduction
A.​ The overall goal of this project is to create a functioning Incident

Management System for the Fox Valley Special Recreation
Association. This project is being continued from last semester,
meaning the project is starting off half completed. The main styling of
the front end is almost fully complete. Two of the five forms are fully
functional in terms of submitting the data to the database. The
remaining forms that are not functional need variable changes on the
front end, and the backend to be created to post them to the database.
The next major functionality would be the exporting of the form data
from the database to an Excel file. Another aspect that needs to be
corrected is the form submission page. We had perceived this
functionality to be completed from our previous work, however, this
turned out to be a problem. The submission page usually does not
come up after successful form submission, which needs to be
corrected. This form submission page is useful because it gives a
clean visual indication of the status of the form they attempted to
submit.
​ Another main aspect of the program that needs to be fixed is the
login function. Currently the login page does not have a functioning
back end. The user has an option of clicking the login button or the
admin button to reach their perspective pages. This needs to be
corrected so there are two buttons, one for employees and one for
admins. The employee button will link directly to the form creation
page, which they have access to four of the five forms, excluding form
04. The admin button will link to a login page where their credentials
will need to be entered and verified by the backend comparing to the
database. The admin login will be preset by us and changed before
deployment to meet the customer’s needs. After credential verification,
it will link to the admin page where all of the admin functions will be
available. These functions include form creation, form viewing, and
security. The form creation function for the admin is the same as the

employee, with the addition of form 04. The form viewing function will
allow the admin to download the current form data in the database to
an excel file. The security function will allow the admin to create
users(giving them a username, and password), change the main
admin password, change any user’s password, and delete any
user(this feature will need to have a layer of protection via a master
password that is separate from the admin password).

B.​ ​​The people that will use this system fall into two main categories.
The first being all FVSRA employees. The employees are able to login
to the system easily and create a form for the designated incident that
occurred. The second category is the admins. The admins are able to
view any created forms as well as create forms.

C.​ The figure below is the workflow diagram that describes how the
customer will use the system. The user will start on the initial page.
This page gives the user two options in the form of buttons. The admin
button and employee button. If the user clicks the employee button
they will be redirected to the form selection page.

On the form selection page the employee will have access to 4 of
the 5 forms, excluding form 04. The user would be able to click the
button correlating to the form they wish to fill out. After filling out the
form they would click the submit button. Upon clicking this button it will
either inform the user of input errors, or if errorless, will redirect to the
status page. The status page will have a confirmation message of the
form submission. There will be a button to link back to the home page
if they wish to submit another form.

If the user selects the admin button, they would be redirected to the
login page. On this page the user would enter their username and
password, and then click submit. If the username and password are
incorrect, a message would display informing the user and they would
be prompted to reenter. If the username and password are correct, the
user will be redirected to the admin page.

On the admin page the user has three options. If they press the
create form button, they will be redirected to the form selection page.
This page functions the same as it would for the employee with the
addition of form 04. The other two options are the view form button and
the security button.

If the user clicks the view form button they will be redirected to the
view form page. The user would click the download button and a
message would appear confirming the download. After the download
has started they would be redirected to the status page which functions
the same as with a form submission.

If the user were to click the security button a dropdown list would
appear with three options. The first option is the create user button. If
the user clicks the create user button a box message with a submit
button will appear prompting the user to input a username and
password. After submitting they would get a confirmation message and
the page would reset to the base state with no buttons clicked.

The second option is the delete user option. If the user clicked this
button a second dropdown list would appear with all of the users
currently registered. The user would select a user and a confirmation
message would appear. If yes was selected the user would be deleted
and a confirmation would appear, then resetting the page. If no was
selected the message would disappear and the deletion would be
canceled.

The third option is the change password option. This option
functions the same way as the delete user option, instead in the
confirm prompt, there would be a text box to enter the new password.

2.​Must Have Requirements
​ Standard user:

S1. ​ Login –
Standard users, being FVSRA staff, need to be able to log in to a

general employee account that does not have a password. This will be
tested by attempting to enter the employee username into the login page.

S2. ​ Form Creation –
Standard users need to be able to create forms. This information

needs to be displayed mimicking the pdf forms provided by FVSRA. The
information needs to be stored in a database. This will be tested by
running a local server and attempting to populate information into a form
for submission.

Admin:
A1.​ Login –

Admin users, being those deemed in charge of administrating this
system via management at FVSRA, need to be able to log in to their
accounts linked with the system. This will be tested by storing a username
and password in a locally run database instance and attempting to enter
said username and password into the login page.

A2. ​ Form Creation –
Admin users need to be able to create forms. This information

needs to be displayed mimicking the pdf forms provided by FVSRA. The
information needs to be stored in a database. Admin users have an
additional form that the standard user does not, form 4E. This will be
tested by running a local server and attempting to populate information
into a form for submission.

A3. ​ Security –
Admins need to be able to use security feature. This feature

includes creating a user, deleting a user, and changing passwords of a user.
This will allow the admin to create other admin accounts that can access
the admin forms and security feature. This will be tested with a locally run
server, checking for the proper population or change in the database.

A4. ​ View Form –
Admin users need to be able to view/download forms on file. This

will be a feature listed in the admin panel and will allow the admin user to
download the form in excel format. This will be tested by populating a
form, submitting it, then attempting to download it, all ran on a local
server.

Backend System:

D1.​ Database –
The system needs a functioning database to store all the data that

goes along with the system. This data includes usernames and passwords
for both admins and standard users. Each username must be unique. This
data also includes all the data in relation to the forms.

3.​Stretch Requirements

Str1. ​ Form View –
Admin users could have the ability of viewing the forms in the web

application in addition to being able to down them in excel format. This
would be tested by populating a form and then attempting to view the
newly created form in the web application run on a local server.

​ ​ Str2.​ Form 4E PDF –
Admin users could have the ability of transferring any given Form

4E in the database directly onto the exact form 4E pdf file provided by
FVSRA. This would be tested by populating a new form 4E and then
attempting to download the newly created form in the proper pdf format,
run on a local server.

Str3.​ Form Submission Page –
All users could have the feature of redirecting them from

submitting a form to the submission page where there would be a message
depending upon the status of their submission. This would be tested by
populating a form, and then attempting to submit the form. Checking if the
page properly reroutes on submission.

Str4.​ Additional Testing –
Additional testing could be done using a framework such as Mocha

Chai. This would be done if the schedule allows.

4.​Design Overview of the Product
Data Design:

​ o This team shall utilize a SQL database that shall store the

application data submitted via the forms filled by the user, as well as

login information & contact info of said admin. Admins can also change

who receives a notification when a form is submitted. For admins, they

shall be required to have login credentials to access all the forms from

the employees that submitted the forms. Admins shall have the ability

to change their contact information as well.

Context Diagram

This diagram shows a general overview of what the web-app can

do.

Architecture: This web application will be designed using a RESTful

backend server with Node.js enabling forms to be stored persistently in

an online database and viewed dynamically on a web page. The client

will be able to communicate with the server by filling out a form, which

the front-end will collect all the info from the required fields, store it

into a JSON object, then using an AJAX call send it to the server.

●​ Prototype –

Login Page:

Form Example:

Admin Controls:

5.​Verification
●​ Demo:

●​ S1. Login - Access the web app on a device

●​ ​ S2. Form Creation - Using postman, send a post request with JSON

response containing all the required fields and return a status 200

(OK), as well as not including all the required fields and return a

value of 400

●​ ​ A1. Access the web app on a device and login with admin

credentials

●​ ​ A2. Form Creation - Using postman, send a post request with JSON

response containing all the required fields and return a status 200

(OK), as well as not including all the required fields and return a

value of 400

●​ ​ A3. Access the webpage using admin credentials and be able to fill

out a form to create a new user. An admin shall also be able to pick

out a user from a table to delete its account. An admin shall also be

able to fill out a form to change its password.

●​ Postman can also be used to send a POST request to verify a user

can be added, and using a DELETE request to delete it, and a PUT

request to change the password.

●​ ​ A4. Access the webpage using admin credentials, be able to see a

dynamic table with multiple form entries which can be viewed

more in detail or be downloaded as a PDF/Excel file. Postman can

be used using a GET request to verify that there are entries in the

database.

●​ ​ D1. Using Postman, and in the following section “Functional

Testing”, using a variety of tests by using GET/POST/DELETE

methods, we can verify that the database is able to

view/create/store form entries properly. If the test returns a status

of 200, it’s working properly.

o Functional Testing:

Postman Test

R# TC # Test Case

Description

Input Data Expected Result Results

R1 T1 Get All Minor

Injuries Records

 Submit a GET request w/

the following url:
{{url}}/fvsra/employeeInjuryReport

 Return a status

200

 PASS

 T2 Get One Minor

Injury Log Record

 Submit a GET request w/

the following url:

{{url}}/fvsra/minorInjuryLog/11

 Return a status

200

PASS

 T3 Create One Minor

Injury Log Entry

Submit a POST request w/ all

the fields filled out w/ the

following url:
{{url}}/fvsra/minorInjuryLog

Return a status

200

PASS

 T4 Create One Minor

Injury Log Entry

w/o all required

data

Submit a POST request w/o

all the fields filled out w/ the

following url:
{{url}}/fvsra/minorInjuryLog

Return a status

400

FAIL

 T5 Delete One Minor

Injury Log Record

Submit a DELETE request w/

the following url:
{{url}}/fvsra/minorInjuryLog/11

Return a status

200

PASS

R2 T6 Get All Form 01

Records

Submit a GET request w/ the

following url:
{{url}}/fvsra/accidentIncidentReport

Return a status

200

PASS

 T7 Get One Form 01

Record

Submit a GET request w/ the

following url:
{{url}}/fvsra/accidentIncidentReport/1

1

Return a status

200

PASS

 T8 Create One Form

01 Entry

Submit a POST request w/ all

the fields filled out w/ the

Return a status

200

PASS

following url:
{{url}}/fvsra/accidentIncidentReport

 T9 Create One Form

01 Entry w/o all

required data

Submit a POST request w/o

all the fields filled out w/ the

following url:
{{url}}/fvsra/accidentIncidentReport

Return a status

400

FAIL

 T10 Delete One Form

01 Record

Submit a DELETE request w/

the following url:
{{url}}/fvsra/accidentIncidentReport

Return a status

200

PASS

R3 T11 Get All Form 02

Records

Submit a GET request w/ the

following url:
{{url}}/fvsra/vehicleAccidentReport

Return a status

200

PASS

 T12 Get One Form 02

Record

Submit a GET request w/ the

following url:
{{url}}/fvsra/vehicleAccidentReport/11

Return a status

200

PASS

 T13 Create One Form

02 Entry

Submit a POST request w/ all

the fields filled out w/ the

following url:
{{url}}/fvsra/vehicleAccidentReport

Return a status

200

PASS

 T14 Create One Form

02 Entry w/o all

required data

Submit a POST request w/o

all the fields filled out w/ the

following url:
{{url}}/fvsra/vehicleAccidentReport

Return a status

400

FAIL

 T15 Delete One Form

02 Record

Submit a DELETE request w/

the following url:
{{url}}/fvsra/vehicleAccidentReport

Return a status

200

PASS

R4 T16 Get All Form 03

Records

Submit a GET request w/ the

following url:
{{url}}/fvsra/propertyLossReport

Return a status

200

PASS

 T17 Get One Form 03

Record

Submit a GET request w/ the

following url:
{{url}}/fvsra/propertyLossReport/11

Return a status

200

PASS

 T18 Create One Form

03 Entry

Submit a POST request w/ all

the fields filled out w/ the

following url:
{{url}}/fvsra/propertyLossReport

Return a status

200

PASS

 T19 Create One Form

03 Entry w/o all

required data

Submit a POST request w/o

all the fields filled out w/ the

following url:
{{url}}/fvsra/propertyLossReport

Return a status

400

FAIL

 T20 Delete One Form

03 Record

Submit a DELETE request w/

the following url:
{{url}}/fvsra/propertyLossReport

Return a status

200

PASS

R5 T21 Get All Form 04

Records

Submit a GET request w/ the

following url:
{{url}}/fvsra/employeeInjuryReport

Return a status

200

PASS

 T22 Get One Form 04

Record

Submit a GET request w/ the

following url:
{{url}}/fvsra/employeeInjuryReport/11

Return a status

200

PASS

 T23 Create One Form

04 Entry

Submit a POST request w/ all

the fields filled out w/ the

following url:
{{url}}/fvsra/employeeInjuryReport

Return a status

200

PASS

 T24 Create One Form

04 Entry w/o all

required data

Submit a POST request w/o

all the fields filled out w/ the

following url:
{{url}}/fvsra/employeeInjuryReport

Return a status

400

FAIL

 T25 Delete One Form

04 Record

Submit a DELETE request w/

the following url:
{{url}}/fvsra/employeeInjuryReport

Return a status

200

PASS

R6 T26 Get All Form 04E

Records

Submit a GET request w/ the

following url:
{{url}}/fvsra/NotificationOfInjuryEmpl

oyerReport

Return a status

200

PASS

 T27 Get One Form 04E

Record

Submit a GET request w/ the

following url:
{{url}}/fvsra/NotificationOfInjuryEmpl

oyerReport/11

Return a status

200

PASS

 T28 Create One Form

04E Entry

Submit a POST request w/ all

the fields filled out w/ the

following url:
{{url}}/fvsra/NotificationOfInjuryEmpl

oyerReport

Return a status

200

PASS

 T29 Create One Form

04E Entry w/o all

required data

Submit a POST request w/o

all the fields filled out w/ the

following url:
{{url}}/fvsra/NotificationOfInjuryEmpl

oyerReport

Return a status

400

FAIL

 T30 Delete One Form

04E Record

Submit a DELETE request w/

the following url:
{{url}}/fvsra/NotificationOfInjuryEmpl

oyerReport

Return a status

200

PASS

